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ABSTRACT 

A problem left open in Dubins and Savages' "How to Gamble if You Must" 

is solved. 

Introduction 

In section 3, chapter 8 of Dubins and Savage [1] the question is raised as to 

whether or not stationary gambling houses on (-c~, oo), with utility function 

/{x>0}, can admit value functions which are both continuous mid not strictly 

increasing. The purpose of this paper is to provide a reasonably simple example 

having both properties. 

Main Section 

The idea is to modify the following simple stationary gambling house which has 

only one gamble available at each fortune x: 

2 1~ 
l"(x) = {"/=} where ~', : 5~,_1 + 5 "+" 

This gambling house has a utility function given by 

U(x)=I if x>_0; = 2  <x> if x < 0 .  

The utility function for the house should be thought of as the probability (under 

the optimal strategy) of attaining the positive half line, [0, oo). We will supple- 

ment this gambling house by an infinite set of gambles {Ai)iel with the property 

* Research partially supported by NSF Grant DMS 91-57461. 
Received October 28, 1991 and in revised form August 19, 1992 

253 



254 T.S. MOUNTFORD Isr. J. Math. 

that for each e > 0 there exists an i(e) E I such that Ai wins 6i (> O) with 

probability Pi > 1 - e. We will prove below that any stationary gambling house 

with these gambles available must have a continuous utility function. It should be 

noted that apart from being positive the 6i and the possible losses are completely 

unspecified. 

LEMMA 1.1: / f  F is a stationary gambling house with a family of gambles having 

the above property then its utility function must be continuous. 

Proof." Suppose that this is not the case. Then for some x0 E R 1 

lim U(x) = U(zo+) > U(zo-) = ,Tolixm U(x). 
"~XO 

But for e arbitrarily small 

(1 - ~ ) u ( x 0 + )  < (1 - ~)u(x0 + 6,(,)~ < v ( ~ 0  - 6,(~)~ < u ( ~ 0 - ) .  
- 2 " -  2 " -  

T h i s  contradiction establishes the lemma. | 

As was observed we did not need to completely specify the winnings and the 

losings of the various gambles {Ai}. So if we add gambles to F which, while 

having the above property, are sufficiently unfavourable then for z close to a 

negative integer but above it the optimum strategy should be to use the original 

gamble 7~. 

Let the gambling house F" be such that r " ( x )  contains the gambles: 

16 2 6 
7,  = 5 ,+1 + ~ , - 1 ,  

where 

7~ = (1 - y'/4)6,+y +y ' /46 , - ,  for y E [0,x,],  

1 

x" = [2(1 - I/2"+I)]4" 

If the gambler pursues the strategy: 

(1) if at x > 0, stop; 

(2) if at z = - y ,  where 0 < y < x,,, use 7~; 

(3) if z < - z , ,  use 7,;  

then it is clear that this strategy has utility given by the function U"(x), where 

1. U"(x) = 1 for z ~ 0, 

2. U"(x) = 1 - ( - ' ) ' / '  for z E [ - x , , 0 ) ,  | --(--Z)I]4/2" 
3. U"(z) = 1/2 for z fi [ - 1 , - x , ] ,  
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4. U"(x)  = 2 -mU(x  + m) for x e [ - ( m  + 1) , -ml .  

This function is self-evidently continuous and not strictly monotonic. The rest 

of the paper is devoted to proving 

PROPOSITION 1.1: The utility of the gambling house F,  is equal to U,, for n 

large enough. 

Remark: From the definition of the utility of the house, it is immediate that Un 

is less than or equal to the utility of F,,. Theorem One of Dubins and Savage [1], 

page 28, shows that the Proposition will be established if we can show that U" 

is excessive. 

Before proving Proposition 1.1 we will require two lemmas. 

LEMMA 1.2: For n large and all x, y, x + y E [-Xn,0], 

u " ( .  + u) _ u"( . )u"(u) .  

Proof: The statement of the lemma is equivalent to the statement 

log(U"(x + y)) > log(U"(x)) + log(U"(y)). 

The above statement will be implied by the convexity of the function 

[ 1___.,/, ] 
u --+ log 1 - ull4/2nJ 

on the interval [0, z,,]. Therefore we will complete the lemma's proof by showing 

that this function has positive second derivative on [0, z,].  

The second derivative of log [(1 - ul/4)/(1 - ul/4/2")] with respect to u is 

equal to 
1 1 -~U--7/411__tt1/4 2n(1 __ U1/4/2n)] 

~6u_e/4 [(1 1 1 1 _ u1/4)2 2 2 - ( 1 _  ul /4 /2- )2j  

which is greater than 

161----~'74 UT/4 1--ul/4' " P ' ~  1--ul/4 2 , , (1_31/4 /2- ) ]  . 

The above expression is clearly strictly positive for u E [0, x,,] provided n is large. 
| 
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LEMMA 1.3: Let x E [-xn,0].  For any gamble7  E r(x),  ET[U n] <_ Un(x). 

Proof: We work through the gambles available in r (x)  systematically. 

1 21  . ~ 21  ,, 
7.: E~.[U"] = ~ + ~ U  (x) < ~"(x) + ~ U  (x) = U"(x). 

7~, for y __ -x:  E~: [U"] = (1 - ~1/4)U"(~ + ~) + y'/4U"(~ - .) .  

The flatness of U n to the right of integers implies that this last term is equal 

to 

(1 - ~1 /4 )u"(~  - ~) + y ' / ~ u " ( ~  - . )  < (1 - ( _~)1 /4 )  + ( _ x ) i / 4 v . ( ~  _ .). 

Our function U n was chosen so that this last expression is equal to U"(x).  

7~, f o r y _ < - x :  

U " ( z )  - E ~ : [ U " I  = U " ( x )  - ~'/4U"(x - n) - (1 - y ' /4 )U"(x  + y) 

= U"(x)  - y ' / 4 /2"U"(x )  - (1 - y ' /4 )U"(x  + y) 

(1 - y ' / 4 1 2 " ) ( u " ( x )  - u " ( ~  + y) ( - y ) )  

The last term is positive by Lemma 1.2 and we are done. | 

Proof of Proposition 1.1: Given the scaling properties of the function U n, to 

establish the excessiveness of this function it suffices to show that for every x E 

[-1,0] and every ~ E r(x) ,E~[U"] < u"(~) .  This has already been established 

for x e [ - x , ,  ° ] in Lemma 2.2. If x • [ - 1 , - x , ] ,  then clearly ET.[U" ] = V" (x )  -- 

1/2, while 

E . j  [U"] < E . ¢ ,  [U,] _< U , ( x , )  = U,(x) .  

The last inequality follows from Lemma 1.3. | 
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