ISRAEL JOURNAL OF MATHEMATICS 838 (1993), 253-256

A SOLUTION TO A PROBLEM OF DUBINS AND SAVAGE
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ABSTRACT
A problem left open in Dubins and Savages’ “How to Gamble if You Must”
is solved.
Introduction

In section 3, chapter 8 of Dubins and Savage [1] the question is raised as to
whether or not stationary gambling houses on (—o0,00), with utility function
I{:>0), can admit value functions which are both continuous and not strictly
increasing. The purpose of this paper is to provide a reasonably simple example

having both properties.

Main Section

The idea is to modify the following simple stationary gambling house which has

only one gamble available at each fortune z:

2 1
—6,_ —8z41-
35 1+ 3041

This gambling house has a utility function given by

I'(z) = {y:} whereq, =

Ulx)=1 ifz>0; =2 ifz<0.

The utility function for the house should be thought of as the probability (under
the optimal strategy) of attaining the positive half line, [0,00). We will supple-
ment this gambling house by an infinite set of gambles {);}ies with the property
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that for each ¢ > 0 there exists an i(e) € I such that \; wins §; (> 0) with
probability p; > 1 — e. We will prove below that any stationary gambling house
with these gambles available must have a continuous utility function. It should be
noted that apart from being positive the é; and the possible losses are completely

unspecified.

LEMMA 1.1: IfT is a stationary gambling house with a family of gambles having

the above property then its utility function must be continuous.

Proof: Suppose that this is not the case. Then for some zy € R!
lim U(z) = U(zo+) > U(zo—) = lim U(z).
PIET) zlzo
But for € arbitrarily small
- _ 0] _ % _
(1 C)U(:L'o"}-) S (1 G)U(:Co + 2 ) S U(xo 9 ) S U(xo )

This contradiction establishes the lemma. [ |

As was observed we did not need to completely specify the winnings and the
losings of the various gambles {)A;}. So if we add gambles to I' which, while
having the above property, are sufficiently unfavourable then for z close to a
negative integer but above it the optimum strategy should be to use the original
gamble v..

Let the gambling house I'* be such that I'(z) contains the gambles:

1 2
Yz = 562+1 + 362—1, 7}':1 = (1 - yl/4)5z+y + yl“&z—n fory e [07$n]a

where
1

T Ra-12E
If the gambler pursues the strategy:

(1) if at = > 0, stop;

(2) if at £ = —y, where 0 < y < z,,, use v¥;

Tn

(3) if £ £ —zn, use vz;
then it is clear that this strategy has utility given by the function U"(z), where
1. UM(z)=1forz 20,
—(—z)V/4
2. Un(z) = &;F;W for z € {—z,,0),

3. U*(z) =1/2for z € [-1, —z,],
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4. U™(z) =27™U(z + m) for z € [-(m + 1), —m].
This function is self-evidently continuous and not strictly monotonic. The rest

of the paper is devoted to proving

ProPoOSITION 1.1: The utility of the gambling house Ty, is equal to U,, for n

large enough.

Remark: From the definition of the utility of the house, it is immediate that U,
is less than or equal to the utility of I',. Theorem One of Dubins and Savage [1],
page 28, shows that the Proposition will be established if we can show that U"
is excessive.

Before proving Proposition 1.1 we will require two lemmas.

LEMMA 1.2: Forn large and all z, y, 2 + y € [—z,0],

U™z +y) 2 U™ (=)U"(y)-

Proof: The statement of the lemma is equivalent to the statement
log(U"(z +y)) 2 log(U"(z)) + log(U"(y)).

The above statement will be implied by the convexity of the function

1_u1/4 ]

u — log [-—————-1 —alfijo

on the interval [0, z,]. Therefore we will complete the lemma’s proof by showing
that this function has positive second derivative on [0, z,,).

The second derivative of log [(1 — u!/*)/(1 — u'/4/2")] with respect to u is
equal to

S| L 1
16 T—u/t ~ 2n(1 —ul/A]2")

_ 1 e 1 1
16 (1—ul/)2 ~ 22n(1 — y1/4/2n)2
which is greater than

1 u~8/4 2 1 w7/ 1 3
161 —ul/4 |ul/t 1 -—ul/4 16 [1-wul/4  27(1 —ul/4/27)]"

The above expression is clearly strictly positive for u € [0, z,,] provided n is large.
[ |
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LEMMA 1.3: Let z € [—z,,0]. For any gamble v € I'(z), E,[U"] < U™(z).

Proof: We work through the gambles available in I'(z) systematically.

21 2 21
Yt By [U"] = 5+ 5307(2) S 5U@) + 530"(@) = U@,

1
3 32
vy, fory > —z: Ep[U™] =(1 - yl“)U"(z +y) +y1/4U"(m —n).

The flatness of U™ to the right of integers implies that this last term is equal

to
(1 -y U™z = 2) +y' U —n) S (1= (=2)'*) + (-2)/*U"(z ~ ).
Our function U™ was chosen so that this last expression is equal to U™(z).

vy, fory < —z:

U™(z) - Eg[U"] =U(2) =y UMz —n) - (1 -y U (= +y)
=U(z) —y"/*/2"U™(z) = (1 =y )U"(z +v)
= (1 -y/2")(Uz) = U™z + y)U"(-y)).

The last term is positive by Lemma 1.2 and we are done. 1

Proof of Proposition 1.1: Given the scaling properties of the function U", to
establish the excessiveness of this function it suffices to show that for every = €
[-1,0] and every X € I'(z), EA[U"] < U"(z). This has already been established
for z € [-z,,°] in Lemma 2.2. If z € [~1, —z,], then clearly E. [U"] = U"(z) =
1/2, while

E’y} [Un] < E‘y!z" [Un] < Un(mn) = Un(z)'

The last inequality follows from Lemma 1.3. [
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