A SOLUTION TO A PROBLEM OF DUBINS AND SAVAGE

BY

T. S. MOUNTFORD*

Department of Mathematics
University of California, Los Angeles, CA 90024, USA

ABSTRACT

A problem left open in Dubins and Savages' "How to Gamble if You Must" is solved.

Introduction

In section 3, chapter 8 of Dubins and Savage [1] the question is raised as to whether or not stationary gambling houses on $(-\infty, \infty)$, with utility function $I_{\{x\geq 0\}}$, can admit value functions which are both continuous and not strictly increasing. The purpose of this paper is to provide a reasonably simple example having both properties.

Main Section

The idea is to modify the following simple stationary gambling house which has only one gamble available at each fortune x:

$$\Gamma(x) = \{\gamma_x\}$$
 where $\gamma_x = \frac{2}{3}\delta_{x-1} + \frac{1}{3}\delta_{x+1}$.

This gambling house has a utility function given by

$$U(x) = 1$$
 if $x \ge 0$; $= 2^{\langle x \rangle}$ if $x < 0$.

The utility function for the house should be thought of as the probability (under the optimal strategy) of attaining the positive half line, $[0, \infty)$. We will supplement this gambling house by an infinite set of gambles $\{\lambda_i\}_{i\in I}$ with the property

^{*} Research partially supported by NSF Grant DMS 91-57461.

Received October 28, 1991 and in revised form August 19, 1992

that for each $\epsilon > 0$ there exists an $i(\epsilon) \in I$ such that λ_i wins δ_i (> 0) with probability $p_i > 1 - \epsilon$. We will prove below that any stationary gambling house with these gambles available must have a continuous utility function. It should be noted that apart from being positive the δ_i and the possible losses are completely unspecified.

LEMMA 1.1: If Γ is a stationary gambling house with a family of gambles having the above property then its utility function must be continuous.

Proof: Suppose that this is not the case. Then for some $x_0 \in R^1$

$$\lim_{x \downarrow x_0} U(x) = U(x_0 +) > U(x_0 -) = \lim_{x \uparrow x_0} U(x).$$

But for ϵ arbitrarily small

$$(1-\epsilon)U(x_0+) \leq (1-\epsilon)U\left(x_0+\frac{\delta_{i(\epsilon)}}{2}\right) \leq U\left(x_0-\frac{\delta_{i(\epsilon)}}{2}\right) \leq U(x_0-).$$

This contradiction establishes the lemma.

As was observed we did not need to completely specify the winnings and the losings of the various gambles $\{\lambda_i\}$. So if we add gambles to Γ which, while having the above property, are sufficiently unfavourable then for x close to a negative integer but above it the optimum strategy should be to use the original gamble γ_x .

Let the gambling house Γ^n be such that $\Gamma^n(x)$ contains the gambles:

$$\gamma_x = \frac{1}{3}\delta_{x+1} + \frac{2}{3}\delta_{x-1}, \quad \gamma_x^y = (1 - y^{1/4})\delta_{x+y} + y^{1/4}\delta_{x-n} \quad \text{ for } y \in [0, x_n],$$

where

$$x_n = \frac{1}{[2(1-1/2^{n+1})]^4}.$$

If the gambler pursues the strategy:

- (1) if at $x \geq 0$, stop;
- (2) if at x = -y, where $0 < y < x_n$, use γ_r^y ,
- (3) if $x \leq -x_n$, use γ_x ;

then it is clear that this strategy has utility given by the function $U^n(x)$, where

- 1. $U^{n}(x) = 1$ for $x \ge 0$, 2. $U^{n}(x) = \frac{1 (-x)^{1/4}}{1 (-x)^{1/4}/2^{n}}$ for $x \in [-x_{n}, 0)$, 3. $U^{n}(x) = 1/2$ for $x \in [-1, -x_{n}]$,

4.
$$U^n(x) = 2^{-m}U(x+m)$$
 for $x \in [-(m+1), -m]$.

This function is self-evidently continuous and not strictly monotonic. The rest of the paper is devoted to proving

PROPOSITION 1.1: The utility of the gambling house Γ_n is equal to U_n for n large enough.

Remark: From the definition of the utility of the house, it is immediate that U_n is less than or equal to the utility of Γ_n . Theorem One of Dubins and Savage [1], page 28, shows that the Proposition will be established if we can show that U^n is excessive.

Before proving Proposition 1.1 we will require two lemmas.

LEMMA 1.2: For n large and all $x, y, x + y \in [-x_n, 0]$,

$$U^n(x+y) \ge U^n(x)U^n(y).$$

Proof: The statement of the lemma is equivalent to the statement

$$\log(U^n(x+y)) \ge \log(U^n(x)) + \log(U^n(y)).$$

The above statement will be implied by the convexity of the function

$$u \to \log \left[\frac{1 - u^{1/4}}{1 - u^{1/4}/2^n} \right]$$

on the interval $[0, x_n]$. Therefore we will complete the lemma's proof by showing that this function has positive second derivative on $[0, x_n]$.

The second derivative of $\log \left[(1-u^{1/4})/(1-u^{1/4}/2^n) \right]$ with respect to u is equal to

$$\frac{3}{16}u^{-7/4} \left[\frac{1}{1 - u^{1/4}} - \frac{1}{2^n(1 - u^{1/4}/2^n)} \right] \\
- \frac{1}{16}u^{-6/4} \left[\frac{1}{(1 - u^{1/4})^2} - \frac{1}{2^{2n}(1 - u^{1/4}/2^n)^2} \right]$$

which is greater than

$$\frac{1}{16} \frac{u^{-6/4}}{1 - u^{1/4}} \left[\frac{2}{u^{1/4}} - \frac{1}{1 - u^{1/4}} \right] + \frac{u^{-7/4}}{16} \left[\frac{1}{1 - u^{1/4}} - \frac{3}{2^n (1 - u^{1/4}/2^n)} \right].$$

The above expression is clearly strictly positive for $u \in [0, x_n]$ provided n is large.

LEMMA 1.3: Let $x \in [-x_n, 0]$. For any gamble $\gamma \in \Gamma(x)$, $E_{\gamma}[U^n] \leq U^n(x)$.

Proof: We work through the gambles available in $\Gamma(x)$ systematically.

$$\gamma_x$$
: $E_{\gamma_x}[U^n] = \frac{1}{3} + \frac{2}{3} \frac{1}{2} U^n(x) \le \frac{2}{3} U^n(x) + \frac{2}{3} \frac{1}{2} U^n(x) = U^n(x)$.

$$\gamma_x^y$$
, for $y \ge -x$: $E_{\gamma_x^y}[U^n] = (1 - y^{1/4})U^n(x+y) + y^{1/4}U^n(x-n)$.

The flatness of U^n to the right of integers implies that this last term is equal to

$$(1-y^{1/4})U^n(x-x) + y^{1/4}U^n(x-n) \le (1-(-x)^{1/4}) + (-x)^{1/4}U^n(x-n).$$

Our function U^n was chosen so that this last expression is equal to $U^n(x)$.

$$\begin{split} \gamma_x^y, \ \text{for} \ y &\leq -x: \\ U^n(x) - E_{\gamma_x^y}[U^n] &= U^n(x) - y^{1/4}U^n(x-n) - (1-y^{1/4})U^n(x+y) \\ &= U^n(x) - y^{1/4}/2^nU^n(x) - (1-y^{1/4})U^n(x+y) \\ &= (1-y^{1/4}/2^n)\big(U^n(x) - U^n(x+y)U^n(-y)\big). \end{split}$$

The last term is positive by Lemma 1.2 and we are done.

Proof of Proposition 1.1: Given the scaling properties of the function U^n , to establish the excessiveness of this function it suffices to show that for every $x \in [-1,0]$ and every $\lambda \in \Gamma(x)$, $E_{\lambda}[U^n] \leq U^n(x)$. This has already been established for $x \in [-x_n, 0]$ in Lemma 2.2. If $x \in [-1, -x_n]$, then clearly $E_{\gamma_x}[U^n] = U^n(x) = 1/2$, while

$$E_{\gamma_x^y}[U^n] \le E_{\gamma_{-x_n}^y}[U_n] \le U_n(x_n) = U_n(x).$$

The last inequality follows from Lemma 1.3.

ACKNOWLEDGEMENT: The author wishes to thank Lester Dubins for his interest and encouragement.

References

[1] L. E. Dubins and L. J. Savage, How to Gamble if You Must, McGraw-Hill, New York, 1965.